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Abstract

The Lev Ginzburg equation is shown to have a unique limit-cycle solution under certain conditions on the parameters

appearing in this second-order, nonlinear differential equation. This conclusion follows from the application of the Hopf

bifurcation theorem.

r 2007 Published by Elsevier Ltd.
The class of differential equations having velocity-dependent frequencies take the form:

€xþ f ð _xÞx ¼ 0, (1)

with the requirement that f ð0Þ40. The general properties of the solutions to Eq. (1), illustrated with particular
examples, were discussed by Mickens and Deft [1]. It was found that for a given f ð _xÞ some solutions were
periodic, while others became unbounded. This result follows from the fact that Eq. (1) can be written in terms
of the phase-space variables, ðx; y ¼ _xÞ, as

y
dy

dx
þ f ðyÞx ¼ 0. (2)

Integrating this equation gives the following relation:Z
ydy

f ðyÞ
þ

x2

2
¼ constant. (3)

The first term, on the left-side, can be considered a generalized kinetic energy expression, TðyÞ and this allows
Eq. (3) to be expressed as

TðyÞ þ
x2

2
¼ constant. (4)

One consequence of the relationship given by Eq. (4) , which is a first-integral of Eq. (1) , is that it indicates the
system modeled by Eq. (1) which has features similar to those of a conservative system [1,2]. In particular, this
means that while Eq. (1) can have periodic solutions, none of them are limit-cycles [1]. In other words, all the
fixed-points corresponding to periodic solutions are either linear or nonlinear centers.
ee front matter r 2007 Published by Elsevier Ltd.
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In this Paper, a special case of a generalization of Eq. (1)

€xþ f ð _xÞx ¼ gð _xÞ, (5)

is studied, i.e.,

€xþ að1� b1 _xÞx ¼ ð1� b1 _xÞðgþ b _xÞ, (6)

where ða;b1; gÞ are positive parameters and b is a real value. This highly nonlinear, second-order differential
equation can be derived from the work of Ginzburg [3,4]. By numerically integrating Eq. (5) , Ginzburg found
that for special values of the four parameters, stable limit-cycles exist. The main purpose of this
communication is to apply the Hopf bifurcation theorem to Eq. (6) and determine the conditions for the
mathematical existence of limit-cycles. The reason why the mathematical analysis has to be done is related to
the fact that numerical integration techniques may produce solutions not corresponding to any of the
solutions of the original differential equation [5,6]. Consequently, a rigorous mathematical analysis is required
to ensure that Eq. (6) has limit-cycle solutions.

To proceed, note that Eq. (6) can be written as two-coupled, first-order equations,

dx

dt
¼ y;

dy

dt
¼ ð1� b1yÞðg� axþ byÞ, (7)

where, as indicated above, x and y are the two-dimensional phase-space variables. The fixed-point is

ðx̄; ȳÞ ¼
g
a
; 0

� �
. (8)

The eigenvalues [7–9] for the fixed-point can be easily calculated and are given by the expression

l1;2 ¼
1

2

� �
b� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a� b2

q� �
, (9)

where it is assumed that b2o4a. From linear stability theory [7,8], it follows that the fixed-point is unstable for
b40, has neutral stability for b ¼ 0, and is stable for bo0.

For the sake of completeness, the first-order differential equation, for which its solutions give the
trajectories in phase-space, i.e., y ¼ yðxÞ, is

dy

dx
¼
ð1� b1yÞðg� axþ byÞ

y
. (10)

Inspection of both Eqs. (6) and (10) gives the following results:
(i) A special exact solution is

xðtÞ ¼
1

b1

� �
tþ x0. (11)

This can be verified directly from Eq. (6).
(ii) Whenever a trajectory, y ¼ yðxÞ, crosses the x-axis, it does so with unbounded slope. This is a

consequence of the fact that the null-cline [8], corresponding to dy=dx ¼ �1, is located at y ¼ 0.
(iii) The dy=dx ¼ 0 null-clines [8] are

y
ð1Þ
0 ðxÞ ¼

1

b1
; y

ð2Þ
0 ðxÞ ¼

1

b

� �
ðax� gÞ. (12)

This result, along with (i), implies that the ðx; yÞ phase-plane is divided into two distinct regions:

ðIÞ xð0Þ ¼ arbitrary; yð0Þ4
1

b1

� �
, ð13Þ

ðIIÞ xð0Þ ¼ arbitrary; yð0Þo
1

b1

� �
, ð14Þ

Trajectories originating in either region remain in that region. The curve (in phase-space) yðxÞ ¼ ð1=b1Þ is
the boundary between the two regions. Since the boundary curve corresponds to the special solution given by
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Eq. (11) and since two distinct solutions cannot intersect each other, because of the existence and uniqueness
theorems for differential [9,10] the above conclusions are immediately seen to be correct.

(iv) The above discussion indicates that if oscillatory solutions exist, they must do so only in region II. Note
that the fixed-point is in region II and a limit-cycle must always contain in its interior a fixed-point [8,9].

To continue, the Hopf bifurcation theorem has to be introduced [6–8]. Consider a two-dimensional system

dx

dt
¼ F ðx; y; lÞ;

dy

dt
¼ Gðx; y; lÞ, (15)

where l is a parameter. Let Eqs. (15) have an isolated fixed-point at ðx̄ðlÞ; ȳðlÞÞ, where the dependence of the
location of the fixed-point on l is indicated. Let the eigenvalues of the Jacobian matrix, JðlÞ, be

r1;2ðlÞ ¼ aðlÞ � ibðlÞ, (16)

where

JðlÞ ¼
F 1ðlÞ F 2ðlÞ

G1ðlÞ G2ðlÞ

					
					, (17)

with

F1ðlÞ�
qF

qx

				
ðx̄;ȳÞ

; F 2ðlÞ�
qF

qy

				
ðx̄;ȳÞ

, ð18aÞ

G1ðlÞ�
qG

qx

				
ðx̄;ȳÞ

; G2ðlÞ�
qG

qy

				
ðx̄;ȳÞ

. ð18bÞ

Let the fixed-point ðx̄ðlÞ; ȳðlÞÞ be asymptotically stable for lo0, unstable for l40, and let að0Þ ¼ 0. Further,
let

daðlÞ
dl

				
l¼0

40; bð0Þa0. (19)

The Hopf bifurcation theorem states that under these conditions, for sufficiently small jlj, an isolated closed
trajectory exists for either l40 or lo0. If ðx̄ð0Þ; ȳð0ÞÞ is locally stable, then a stable limit-cycle exists about
ðx̄ðlÞ; ȳðlÞÞ for sufficiently small l40.

Examination of Eqs. (7), (8) and (9) shows that the bifurcation parameter l should be identified with b, i.e.,
l ¼ b, and

aðbÞ ¼
b
2
; bðbÞ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a� b2

q
Þ=2. (20)

Noting that

að0Þ ¼ 0;
da

db

				
b¼0
¼

1

2
40; bð0Þ ¼

ffiffiffi
a
p

, (21)

it follows that all the conditions hold for application of the Hopf bifurcation theorem. Thus, the general
conclusion is that the Lev Ginzburg equation can have a stable limit-cycle solution if b is positive and
sufficiently small. However, the following observations can be made:
(a)
 The fixed-point, ðx̄; ȳÞ, does not depend explicitly on b, i.e.,

x̄ðbÞ ¼
g
a
; ȳðbÞ ¼ 0. (22)
(b)
 The Hopf bifurcation theorem implies that there exists some constant, bc, such that a stable limit-cycle
occurs for

0obobc. (23)
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However, the theorem provides no guidance as to how to calculate and/or estimate bc. It should be noted
that the Hopf bifurcation theorem provides only a local result for the creation of a limit-cycle. In general,
the direct analytical determination of bc for an arbitrary second-order differential equation for which the
theorem applies is a major unsolved problem in the theory of bifurcations [10–12].
(c)
 From a qualitative perspective, if initial conditions are such that �1oxð0Þoþ1 and yð0Þoð1=b1Þ, then
for 0obobc, the solution xðtÞ should eventually settle in a steady-state, periodic motion of fixed
amplitude and frequency. For the same set of initial conditions, but with bo0 (and small), xðtÞ should
oscillate with a decreasing amplitude.
(d)
 The numerical results, given in Figs. 1 and 2, illustrate the conclusions reached in (c).
The Lev Ginzburg equation is but one example of the interesting class of differential equations of the type
given by Eq. (5) . This class of equations has both velocity-dependent frequencies, f ð _xÞ, and forcing terms,
gð _xÞ. The expectation is that such equations will also provide valid mathematical models for a range of
phenomena involving nonlinear oscillations. The work presented here is an initial step in this direction.
However, for sufficiently small and positive b, the method of harmonic balance [9] can be used to estimate the
parameters of the limit-cycle for Eq. (6). These parameters are the associated angular frequency and the
amplitude of the small oscillators in a neighborhood of the fixed-point.
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1. Plot of xðtÞ vs t corresponding to xð0Þ ¼ 1, yð0Þ ¼ 0:01, a ¼ 1, b1 ¼ 1, g ¼ 1, b ¼ 0:01. The subscript k denotes samples of the
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2. Plot of xðtÞ vs t corresponding to xð0Þ ¼ 1, yð0Þ ¼ 0:01, a ¼ 1, b1 ¼ 1, g ¼ 1, b ¼ �0:1. The subscript k denotes samples of the
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First, write xðtÞ as

xðtÞ ¼ x̄þ uðtÞ, (24)

where x̄ ¼ g=a. Substituting this result in Eq. (6) gives the following differential equation for uðtÞ

€uþ au ¼ ðab1Þu _uþ b _u� ðbb1Þ _u
2, (25)

where it is observed that the parameter g does not appear.
Second, note that the right-side of Eq. (25) is quadratic in _u. This implies that the first-order harmonic

balance approximation for Eq. (25) should be of the form

uðtÞ ¼ Aþ B cosðotÞ, (26)

where A, B and o are to be determined. Substituting Eq. (26) into Eq. (25) gives

aAþ
b1bo

2B2

2

� �
þ Bða� o2Þ cos yþ ½ab1oABþ obB� sin y

þ ðHigher� order harmonicsÞ ’ 0, ð27Þ

where y ¼ ot. Harmonic balancing gives the three relations

aAþ
b1bo

2B2

2
¼ 0, (28a)

Bða� o2Þ ¼ 0, (28b)

ab1oABþ obB ¼ 0. (28c)

The nontrivial solutions of these equations for ðo;A;BÞ are

o ¼
ffiffiffi
a
p

; A ¼
b
ab1

� �
; B ¼ �

2

a

� �1=2
1

b1

� �
, (29)

where the ð�Þ in the B equation merely indicates two oscillations that are 1801 out of phase. Picking the ðþÞ
sign for B and using the relationships, given in Eqs. (24) and 26, it follows that a first-order harmonic balance
solution for xðtÞ is

xðtÞ ¼
g
a

� �
�

1

ab1

� �
b

� �
þ

2

b21a

 !1=2

cosð
ffiffiffi
a
p

tÞ. (30)

Inspection of Eq. (30) leads to the following results for this level of harmonic balance application:
(i)
 The ‘‘center’’ of the limit-cycle is shifted by an amount proportional to b. Since b is assumed small,
a requirement of the calculation, the ‘‘center’’ of the limit-cycle oscillation is close to the fixed-point of
Eq. (6), but modified by a correction of OðbÞ.
(ii)
 The amplitude of the oscillation is given by B; see Eq. (29).

(iii)
 The angular frequency o is equal to the oscillations of the linear part of Eq. (25).
Finally, preliminary numerical integrations of Eq. (6) indicate that bc may be close to the value 0:0354.
However, as stated above, it is not possible to analytically estimate a value for bc based on current
mathematical results involving the Hopf bifurcation theorem. It is also unlikely that the use of harmonic
balance will provide any substantial guidance for the calculation of bc since, for limit-cycle behavior, harmonic
balance methods generally are equivalent to perturbation procedures for which b must be taken small.

In summary, under certain conditions the Lev Ginzburg equation has been shown to undergo a Hopf
bifurcation such that a stable limit-cycle exists. The method of harmonic balance was then used to estimate
the parameters, amplitude and angular frequency, of this periodic solution. Numerical experiments were
consistent with these results and a (numerical) estimate was made for the critical value of b, namely
bc ¼ 0:0354.
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